Firefighting on Geometric Graphs with Density Bounds
نویسندگان
چکیده
Let G be an infinite geometric graph; in particular, a graph whose vertices are a countable discrete set of points on the plane, with vertices u, v adjacent if their Euclidean distance is less than 1. A “fire” begins at some finite set of vertices and spreads to all neighbors in discrete steps; in the meantime f vertices can be deleted at each time-step. Let f(G) be the least f for which any fire on G can be stopped in finite time. We show that if G has bounded density, in the sense that no open disk of radius r contains more than λ vertices, then f(G) is bounded above by the ceiling of a universal constant times λ/r. Similarly, if the density of G is bounded from below in the sense that every open disk of radius r contains at least κ vertices, then f(G) is bounded below by κ times the square of the floor of a universal constant times 1/r.
منابع مشابه
On Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملOn the total version of geometric-arithmetic index
The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملGeometric-Arithmetic Index of Hamiltonian Fullerenes
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ars Comb.
دوره 131 شماره
صفحات -
تاریخ انتشار 2017